Delta function $\delta(f)$

- (Dirac) delta function or (unit) impulse function
- Usually depicted as a vertical arrow at the origin
- Not a true function
- Undefined at $f=0$
- Intuitively we may visualize $\delta(f)$ as an infinitely tall, infinitely narrow rectangular pulse of unit area

Time Manipulation

- Consider a function of time $x(t)$.
- Time shifting:

area: $\frac{1}{2} \times 2 \times(5-(-2))$
- When $T>0, x(t-T)$ is $x(t)$ right-shifted (delayed) by T.
- When $T<0, x(t-T)$ is $x(t)$ left-shifted (advanced) by $|T|$.
- Summary: $g(t-T)$ is $g(t)$ right-shifted by T.

$$
x\left(\frac{1}{2} t\right)
$$

- Time scaling:
- When $0<a<1, x(a t)$ is $x(t)$ expanded in time by a factor of $\frac{1}{a}$.
- When $a>1, x(a t)$ is $x(t)$ compressed in time by a factor of a.
- Summary: When $a>0, x(a t)$ is $x(t)$ scaled horizontally by a factor of $\frac{1}{a}$.
- Note that the signal remains anchors at $t=0$. In other words, the signal at $t=0$ remains unchanged.
- Time inversion (or folding):
- $x(-t)$ is the mirror image of $x(t)$ about the vertical axis.

Time Manipulation

- For $x(m t+c)$, may consider it as
- $x\left(m\left(t-\left(-\frac{c}{m}\right)\right)\right)$: First scale $x(t)$ horizontally by a factor of $\frac{1}{m}$. Then, right-shift by $-\frac{c}{m}$.
- $x((m t)-(-c))$: First right-shift $x(t)$ by $-\frac{c}{m}$. Then scale horizontally by a factor of $\frac{1}{m}$.

$\delta(a t)$

67 Here, I use $a=\frac{1}{2}$.

An Example for HW2

```
% specrect.m plot the spectrum of a square wave
close all
time=20;
Ts=1/100;
t=0:Ts:(time-Ts);
x=[t <= 2]; % rectangular pulse $1[0 \leq t \leq 2]$
plotspect(x,t)
xlim([-5,5])
% length of time
    % time interval between samples
    % create a time vector
% call plotspect to draw spectrum
```

$$
x(t)=\left\{\begin{array}{lc}
1, & 0 \leq t \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Another Example for HW B

```
close all
time=1;
Ts=1/400;
t=0:Ts:(time-Ts);
% length of time
% time interval between samples
% create a time vector
x =cos(2*pi*100*t);% cosine signal
plotspect(x,t) % call plotspect to draw spectrum
```


Another Example for HWB

