Delta function $\delta(f)$

- (Dirac) delta function or (unit) impulse function
- Usually depicted as a vertical arrow at the origin
- Not a true function
 - Undefined at f = 0
- Intuitively we may visualize $\delta(f)$ as an infinitely tall, infinitely narrow rectangular pulse of **unit area**

Time Manipulation

- Consider a function of time x(t).
- Time shifting:
 - When T > 0, x(t T) is x(t) right-shifted (**delayed**) by T.
 - When T < 0, x(t T) is x(t) left-shifted (advanced) by |T|.
 - Summary: g(t T) is g(t) right-shifted by T.
- Time scaling:
 - When 0 < a < 1, x(at) is x(t) expanded in time by a factor of $\frac{1}{a}$.

æ(2t)

- When a > 1, x(at) is x(t) compressed in time by a factor of a.
- Summary: When a > 0, x(at) is x(t) scaled horizontally by a factor of $\frac{1}{a}$.
- Note that the signal remains anchors at t = 0. In other words, the signal at t = 0 remains unchanged.
- **Time inversion** (or folding):
 - x(-t) is the mirror image of x(t) about the vertical axis.

[Lathi & Ding, 2009, Section 2.3, p. 28-32]

 $\alpha_{rea}: \frac{1}{2} \times 2 \times (5 - (-2))$

5/2

 $area = \frac{1}{2} \times 2 \times (5 - (-2)) \times \frac{1}{2}$

Time Manipulation

An Example for HW2

Another Example for HW³

Another Example for HW³

